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In a very long Gaussian polymer on time scales shorter than the maximal relaxation time, the mean squared

distance traveled by a tagged monomer grows as

~tl/2

. We analyze such subdiffusive behavior in the presence

of one or two absorbing boundaries and demonstrate the differences between this process and the subdiffusion
described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of
diffuser between two absorbing boundaries is finite. Our results restrict the form of the effective dispersion

equation that may describe such subdiffusive processes.
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I. INTRODUCTION

The stochastic fluctuations of a broad range of physical
systems [1] exhibit a behavior commonly denoted as anoma-
lous diffusion. The random motion is characterized by the
scaling of a mean squared coordinate, which (when averaged
over many realizations) scales as 7 in time 7. For “normal”
diffusion a=1, while the cases of a# 1 are referred to as
“anomalous,” with a<1, corresponding to subdiffusion,
while @>1 describes superdiffusion. The physical origin of
anomalous behavior is usually the coupling of the particle (or
some other coordinate) to many other degrees of freedom,
such that its dynamics is the superposition of numerous other
modes with widely distributed time scales. In principle, there
is no reason to expect any “universality” in such anomalous
processes, and any two situations described by the same
exponent a may have very different characteristics. Never-
theless, certain general considerations have motivated ap-
proaches that encompass a large variety of cases: for a re-
view see Ref. [2].

Many problems related to the behavior of random walkers
can be formulated in terms of first passage of a walker, or its
absorption at a boundary [3-5]. The presence of the absorb-
ing boundary may help to discriminate between different
types of anomalous random walkers. Indeed, in the following
subsections we shall demonstrate how the study of absorp-
tion can be used to gain better understanding of the complex-
ity of anomalous behavior. The behavior of a normal diffuser
confined by absorbing boundaries is well understood; in par-
ticular, for large times ¢ the survival probability S(¢) of such
a diffuser decays exponentially. Consequently, the probabil-
ity density function (PDF) of the diffuser to be absorbed at a
particular time Q(7)=-dS(r)/dt also exhibits an exponential
decay, leading to a finite mean absorption time. The corre-
sponding result in the case of subdiffusion is less clear. Only
recently it was established [6] (while building on previously
known expressions [2,7]) that for one-dimensional (1D) sub-
diffusion between two absorbing boundaries which is de-
scribed by a particular (fractional) diffusion equation [2], the
PDF of absorption Q(7) decays as a small power of ¢, leading
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to an infinite mean absorption time. The fractional diffusion
equation used in this analysis [6] applies to continuous time
random walks, which at each step have a waiting time dis-
tribution with a long tail.

A relatively simple and practically important case of sub-
diffusion is the motion of a tagged monomer in a long poly-
mer, whose anomalous dynamics was deduced and (numeri-
cally) observed by Kremer et al. [8]. A polymer consisting of
a large number N of monomers has processes happening on
multiple length scales, ranging from the microscopic dis-
tance, such as separation between adjacent monomers a to
the size of the polymer. (A measure of the latter is the radius
of gyration R,. In a good solvent R,~aN" [9], with the ex-
ponent »=0.59 in space dimension d=3. The “=" sign in-
dicates omission of a dimensionless prefactor of order unity.
In the absence of intermonomer repulsion v=1/2 for any d.)
To these length scales are associated times 7o =~a’/D,,
below which a selected monomer “does not feel” its sur-
roundings, and 7y=R;/D,, =a’*N'*?"/D, for how long it
takes the polymer to diffuse its own R,. Here D, denotes the
diffusion constant of a single monomer, while the diffusion
constant of the entire polymer, or its center of mass (c.m.), is
D,/N. (In this discussion we disregard hydrodynamic inter-
actions.) Very short and very long times correspond to nor-
mal diffusion with different diffusion constants. It has been
shown in Ref. [8] that for intermediate times 7o <t< Ty,
the polymer undergoes anomalous diffusion with mean
squared distance ~a>~2*(D )%, where a=2v/(1+2v). Note,
that subdiffusion occurs even in the case of the ideal polymer
with v=1/2.

In this work we analyze the subdiffusive motion of a
tagged monomer which is part of an ideal (Gaussian) one-
dimensional (1D) polymer. While the entire polymer per-
forms diffusive (Monte Carlo) dynamics, we record the po-
sition of a single monomer at the midpoint of the chain. In
the absence of absorption, this is a simple, analytically solv-
able problem, and the exact PDF of the monomer position is
easily obtained. We could not extend these solutions in the
presence of absorbing boundaries, and instead resorted to
numerical studies. Indeed, with a single absorbing boundary,
the PDF of the monomer position cannot be found using the
standard method of images, which is the standard approach
for normal diffusion and even some cases of subdiffusion.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.061121

YACOV KANTOR AND MEHRAN KARDAR

We show that when such a particle is placed between two
absorbing boundaries, it has a finite mean absorption time,
which scales (as expected) with the distance between the
absorbing boundaries. Thus, the tagged monomer presents a
simple example of subdiffusion whose survival probability
differs drastically from that obtained by application of frac-
tional diffusion.

To provide the basis of comparison with anomalous dif-
fusion, in Sec. II we briefly review the behavior of a normal
diffuser in the presence of absorbing boundaries. Our model
of the tagged monomer, and the numerical procedure used,
are presented in Sec. III. We also present some numerical
results confirming the expected subdiffusive motion of a
single monomer. In Secs. IV and V we study the behavior of
the tagged monomer in the presence of a single and a pair of
absorbing walls, respectively. We thereby demonstrate the
similarities and distinctions between our anomalous diffuser
and a normal random walk. Notably, we stress the differ-
ences between our case and the solution to the fractional
diffusion equation. In the final Sec. VI, we discuss the pos-
sible applicability of our results to the translocation of a
polymer through a membrane pore, which was in fact one of
the motivations for this study.

II. NORMAL DIFFUSION WITH ABSORBING
BOUNDARIES

The simplest model of a Brownian particle is a random
walk (RW) on a discrete lattice, in which both the position of
particle R and time (number of steps) f are integers. Exact
expressions for the PDF p(R,f), and many other properties,
are readily available [10]. A continuum version is the Lange-
vin equation for the motion (diffusion) of a single particle in
a solvent (in the high friction limit), moving under the influ-
ence of thermal noise [11]

IR
§E= 7(1). (1)

Here ¢ is the friction coefficient, and the thermal noise sat-
isfies (7(£))=0 (no bias) and {7(¢) 7(t'))=2kzTS(t—1"). (The
angular brackets, (---), indicate averages over different real-
izations of the thermal noise.) Starting at R=0 at r=0, the
PDF of particle position at a later time is

P(R,1) ! ( K ) (2)
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where ¢2=2D,t depends on the diffusion constant D,

=kyT/{. From the Langevin equation, one can also directly

construct the Fokker-Planck (diffusion) equation [11,12] for

the PDF as

JIP(R,1) b PP(R,1)

ot °  HR? ®)

(Throughout this paper we consider one-dimensional motion;

the generalization to higher dimensions is straightforward.)
Consider a diffusing particle starting at the origin and

reaching position R at time ¢ without ever touching an ab-
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sorbing boundary at R,>0. The solution of both continuous
and discrete versions of this problem have been described in
detail by Chandrasekhar [13]. It can be shown that the PDF
for the random walker must vanish on the absorbing bound-
ary. Since the diffusion equation is linear, this boundary con-
dition can be satisfied by superposing the PDF of a free
particle [Eq. (2)], and one starting at a reflected image as
P(R,t)=P(R,1)-P(R-2R,,1). The survival probability S(7)
=JR4P(R,1) reduced by absorption [4], and for large times
the absorption PDF decays as Q() «<¢ ¥2. This PDF has di-
verging mean, since the particle can drift infinitely far in the
direction opposite the wall. It should be noted that the image
method is specifically suited to random walkers performing
independent unit steps; it fails for the subdiffusive walkers
considered in this paper, and also for long-range hops of
superdiffusive motion [14].

If the 1D diffusing particle is confined by two absorbing
boundaries, one can still use superposition by the method of
images to create a solution. However, in order to satisfy both
boundary conditions, an infinite set of images is necessary. A
more convenient answer is obtained by expanding the solu-
tion in terms of the eigenfunctions of the diffusion Eq. (3).
For a particle enclosed by absorbing boundaries at R,; =0
and R,,=L, this gives

i 2
PR =2 A, sin(?)exp[— (%) Dat] , @

n=1

where {A,} depend on the initial conditions. Note that at long
times P(R,f)=A, sin(mR/L)e~™1’Ps je. the PDF has a
simple sinusoidal shape with zeroes on the boundaries. The
survival probability is S(¢) «e~"", where the characteristic de-
cay time 7=L?/7°D, is of the order of time the particle
needs to diffuse over the length of the interval. The PDF for
absorption Q(r) also decays with the same time constant.

Anomalous diffusion can in principle have a myriad of
distinct causes. An extensively studied case corresponds to
the so-called continuous time random walks for which the
waiting time between successive steps is taken from a broad
distribution, with power law tails and a diverging mean. The
interest in such processes originated in studies of diffusion in
semiconductors [15], but they eventually became a prototype
of anomalous diffusion. The fractional diffusion equation
(which involves an integral operator) was developed to de-
scribe the evolution of the PDF for such walkers [16,17], and
explicit solutions are now available [2,17-19]. Unlike Eq. (2)
the solution to these equations is not smooth, but has a cusp
at the origin. Another interesting feature is the behavior of
the absorption PDF for anomalous diffusers between two ab-
sorbing boundaries: it has been shown [6], by careful analy-
sis of the solutions [2,7], that for large times, Q(¢) decays as
1+ Jeading, for <1, to a diverging mean absorption
time!

III. THE MODEL AND NUMERICAL PROCEDURE

A monomer in a polymer undergoes anomalous diffusion
even in the trivial case of a phantom chain with no interac-
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tions, for which v=1/2 in any d. For this value of v, mono-
mer fluctuations are governed by an exponent a=1/2, and
thus exhibit subdiffusion. Since many properties of phantom
polymers can be calculated exactly, this presents an excellent
model for the study of subdiffusion. For simplicity, we shall
restrict ourselves to the one-dimensional situation; generali-
zation to higher dimensions is straightforward.

After coarse graining, a sufficiently long flexible polymer
can be represented by effective monomers connected to their
nearest neighbors by harmonic potentials (Gaussian springs)
[9,20]. Thus, the Hamiltonian for a chain of N monomers is

N-1
H= g > Ry =R (5)

n=1

The distribution of the distance between two adjacent (along
the chain) monomers at a temperature 7 is governed by the
Boltzmann factor exp[—BK(R,,;—R,)?*/2], with B=1/(kgT)
and kg is the Boltzmann constant. The mean squared separa-
tion between adjacent monomers is a’=kgzT/K, while the
mean squared radius of gyration is RzzéN(l —1/N?)kT/K
~ ¢ NksT/K.

Theoretical treatment of the polymer described above re-
quires solution of N coupled Langevin equations. However,
the problem becomes particularly simple if we describe the
configurations using Rouse modes [20]

Sreofdi-t).

U —_
1 n=1 2

1

N
where g=pm/N and p=0,1,...,N-1. In terms of Uq,
Langevin equations decouple, and each Rouse mode can be
viewed as an independent “particle” moving in a harmonic
potential whose strength depends on g. The PDF of every U,
is Gaussian. Conversely, the position of each monomer can
be viewed a linear combination of U,’s [inverse of Eq. (6)].
Since the linear combination of Gaussian variables is a
Gaussian variable, we are assured that each monomer is de-
scribed exactly by a Gaussian PDF, and the theoretical study
is reduced to evaluation of the mean and variance of that
distribution (see later). In the presence of absorption, such
treatment is not possible.

We measured distances in dimensionless units, i.e., mul-
tiplied by VK/kgT. In these units the root mean square sepa-
ration of adjacent monomers is a=1, and R§~N /6. We used
diffusive (Rouse) dynamics to evolve the system in time, i.e.,
the monomers were moved using standard Monte Carlo
(MC) moves. An elementary MC move consists of randomly
picking one monomer and attempting to increment its posi-
tion by SR chosen uniformly from the interval (=1,+1), in
dimensionless units. The change in the Boltzmann weight
factor controls the probabilistic decision of whether the
move is accepted. N elementary move attempts are defined
as one MC time unit. The mean squared displacement of a
monomer in a single move determines the diffusion constant
D,; with the above choice of step size we had D,=0.10.

For simulations we chose polymers of odd lengths N=2'
+1, with /=1,2,...,10, i.e., N=3,5,9,...,1025. While all
the monomers moved during the simulation, we followed
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FIG. 1. (Color online) PDF for the position of the central
monomer in a Gaussian chain of 129 monomers at times
t=2000,4000, ...,20 000 (from narrowest to the widest graph).
The distributions were obtained from 100 000 runs using bin size
AR=0.1. The continuous lines represent normalized Gaussian fits to
the distributions.

only the position of the central monomer numbered ¢=2/"!
+1. For each case, 100 000 independent simulations were
performed to ensure reliable averages.

As an example, Fig. 1 depicts the PDF of the position of
a central monomer (¢c=65) in a Gaussian polymer of N
=129 monomers. At r=0 all monomers were located at the
coordinate origin. As the configuration of the polymer
evolved in time, the position of the 65th monomer was re-
corded. Repeating the process 100 000 times produced the
distributions shown if Fig. 1. Note the excellent (single pa-
rameter) fit of the normalized Gaussian to the actual graphs.
Indeed, as explained in the discussion following Eq. (6) the
PDF of the monomer must be Gaussian at all times. It should
be noted, that this shape is the same as in the case of the
normal diffusion, and significantly differs from solutions of
subdiffusive fractional diffusion equations which contain a
cusp at the origin (see, Ref. [2]).

While the shapes of the graphs in Fig. 1 are not anoma-
lous, the time dependence of their variance is. For times
shorter than the longest relaxation time TN=R§/2DCAm_
=a’N?/12D,, which in the above case becomes 7,0=1.4
X 10%, the variance of the distribution grows as "2, while for
times longer than 7y it is linear in ¢. This result can be dem-
onstrated analytically, since the variance of the particle posi-
tion can be expressed as a sum of variances of Rouse modes.
[Analogous calculation for a fluctuating line (or surface) can
be found in Ref. [21].] Figure 2 depicts the dependence of
the variance on ¢. While all the points are within a half de-
cade from the crossover point, one can clearly discern the
two types of behavior: the slope of the straight line through
the first four points is 0.52, very close to the expected 1/2,
and gradually increases to the right of the graph.

IV. A SINGLE ABSORBING BOUNDARY

Let us now introduce absorption into the problem. We
assume that at £=0 all monomers are located at R=0, and an
absorbing boundary is placed at R,=8, i.e., when the central
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FIG. 2. (Color online) Logarithmic plot of the variance of the
probability distributions depicted at Fig. 1 as a function of time.

particle reaches this point it is absorbed and the diffusion
process ends. It should be stressed that other monomers of
the polymer do not feel the absorbing boundary; their sole
function is to generate anomalous diffusion of the tagged
particle.

We begin with a very short polymer with N=3, whose
radius of gyration is significantly shorter than R,. More im-
portantly, its maximal relaxation time 73~ 28 is significantly
shorter than the time (about 10%) for the c.m. of the polymer
to diffuse the distance from the origin to the absorbing
boundary. Therefore, at the time scales at which the particle
can be absorbed, the motion of the tagged monomer is indis-
tinguishable from that of the c.m. of the polymer. Conse-
quently, the problem of absorption of the central monomer
should be indistinguishable from that of a normal diffuser
with diffusion constant D, /3.

Figure 3 depicts the observed PDF of the position of the
central monomer of a polymer with N=3 at various times.
The area under the graphs decreases with time due to absorp-
tion. The shapes are the same as expected for normal single
particle diffusion: the solid lines are (single parameter) fits to
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probability density
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FIG. 3. (Color online) PDF of the position of the central particle
in a polymer with N=3 monomers with an absorbing wall
at R,=8. The graphs correspond (narrow to broad) to ¢
=200,400, ...,1000, and solid lines represent fits to the difference
of two identical Gaussians centered at R=0 and R=16. The distri-
butions are obtained from 100 000 runs, and the bin size is AR
=0.1.
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FIG. 4. (Color online) PDF of the position of central particle in
a polymer with N=129 monomers with an absorbing wall at R,
=8. The graphs correspond (narrow to broad) to times ¢
=2000,4000,...,20 000. The distributions were obtained from
100 000 runs using bin size AR=0.1.

a difference between two Gaussians centered at image points
R=0 and R=2R,. The excellent fits demonstrate that normal
diffusion well describes the absorption for such small N.
Moreover, the variances of the Gaussians fits increase lin-
early with time, with a prefactor corresponding to o>(r)
=2D_ . t, in which D, was calculated independently.

This behavior changes radically when N becomes large.
Already for N=129 all resemblance to regular diffusion van-
ishes. The maximal relaxation time 7j,9=1.4X 10* is of the
same order as the time required for the c.m. of the polymer to
diffuse the distance to the absorbing boundary (about 4
X 10%), and R, of the polymer is of the order of the distance
to the absorbing boundary. The PDF depicted in Fig. 4 can-
not be fitted by the difference between two Gaussians at
image points. In particular, the PDF is not linear close to the
boundary, but appears to vanish quadratically. Thus the
qualitative behavior changes drastically on going from regu-
lar diffusion for small N to anomalous diffusion at large N.

V. TWO ABSORBING BOUNDARIES

We next consider absorption of the central monomer by
two boundaries located at R,=+8, for N ranging from 3 to
1025. Figure 5 depicts on a semilogarithmic scale the PDF of
the absorption Q(r) for several N. For small polymers the
curves are indistinguishable from that of a normal random
walker with diffusion constant D.,, =D,/N, which can be
calculated from Eq. (4), with {A,} selected to correspond to
the initial state [P(R,0)=&(R)]. After integrating P(R,) over
R to obtain S(r), we get Q(t)=—-dS/dt. As explained in Sec.
II, for large times Q(f) decays exponentially with a time
constant TzRi/ D= RZ/ D,. The mean absorption time is
of the same order of magnitude. The dependence of the mean
time, and of the time constant for decay, is depicted by
squares and circles, respectively, in Fig. 6. Note that when N
becomes large enough, so that the longest relaxation time of
the polymer exceeds the typical time it takes for a particle to
travel the distance between the absorbing boundaries, Q(r)
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FIG. 5. PDF of the absorption time (in Monte Carlo time units)
of the central monomer in a Gaussian polymer of length N. The
tagged monomer can be absorbed at one of two boundaries at R,
=+8. The plots (from left to right, solid lines) correspond to N=3,
9, 33, 129, and 513 (dots), and the histogram was calculated from
100 000 independent runs, with bin size Ar=200. The graphs for
N=257, 1025 (not shown), and 129 are virtually indistinguishable.

becomes independent of N. Indeed all the graphs for N
=129,257,513,1025 coincide with each other. The long
time behavior remains an exponential decay, as can be seen
from the straight lines on the semilogarithmic plot. These
curves thus depict true anomalous diffusion in the “infinite-N
limit,” and the corresponding exponential decay time con-
stant scales as the time it takes to cover the interval by sub-
diffusion, i.e., 7=R’}/(a’D,).

So far, we reported on simulations in which at time =0,
the entire polymer is located at the origin, i.e., R,=0 for all
n. This is a particularly convenient choice for analytical cal-
culations, since all Rouse modes vanish at =0 and their
mean values (averaged over realizations of the noise) remain
zero at all times. In any case, we know that the initial value
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FIG. 6. (Color online) The mean first passage (absorption) time
(square), and the decay time-constant of the absorption PDF
(circle), as a function of polymer size N, when all monomers were
located at the origin at /=0. Diamonds and crosses show the same
quantities when at time #=0 only the central monomer is at the
origin, while the remaining monomers are in a typical equilibrium
position. The data are obtained from 100 000 independent runs. The
statistical error bars in the mean times (approximately 0.3%), and
the estimated systematic errors in the decay time constants (less
than 5%) are much smaller than symbol sizes.
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FIG. 7. (Color online) PDF of the central monomer of a 129-
monomer Gaussian polymer absorbed at boundaries a distance 8
from the initial position on both sides. The curve with the larger
mean corresponds to the case when at =0 all R,,=0, while the other
plot corresponds to starting configuration where R.=0 while the
remaining monomers are equilibrated. This plot (histogram) was
calculated from 100 000 independent samples; bin size Ar=200.

of each Rouse mode will be forgotten after one relaxation
time of that mode. One may consider a different case, where
at =0 the polymer assumes a randomly selected equilibrium
configuration. Thus, in addition to averaging our results over
different realizations, we also need to average over the start-
ing configurations. This initial condition appears more natu-
ral since the time =0 is not special. In any case, we find that
the differences between the two procedures are rather small.
For small N we cannot expect much difference, because by
the time the polymer reaches the absorbing boundary it is
equilibrated in any case. The results for mean absorption
time and decay time constant are depicted by diamonds and
crosses, respectively, in Fig. 6. We see that the new proce-
dure gives slightly shorter mean absorption times and essen-
tially the same decay times. Figure 7 depicts the PDF of
absorption times for N=128. It seems that at short times the
random starting point diffuser moves slightly faster leading
to shorter mean times, but for large times both cases are
characterized by the same decay constant.

With its exponential decay the long time behavior of a
particle between absorbing boundaries more resembles nor-
mal diffusion, although the time scales have to be determined
using anomalous diffusion arguments. Nevertheless, the PDF
of the unabsorbed monomer at long times does not resemble
that of a normal diffuser. We studied the PDF of the positions
of surviving particles in 100 000 independent runs for a
polymer with N=129. Naturally, as the time increases the
probability of not being absorbed decreases. (The decrease in
probability also means that for large ¢ the PDF was derived
from samples significantly smaller than 100 000 and, conse-
quently, the statistical accuracy of the results decreased.) To
enable a convenient comparison between the PDFs at various
times we normalized them to 1. In the results depicted in Fig.
8, the PDFs of the particle position were recorded at different
times, all of the order of mean absorption time. Superficially
these results resemble regular diffusion. In analogy to Eq.
(4), it appears as if at very long times only a slowest “eigen-
mode” survives and the PDF decays as W(R/R,)e™"'", with an
eigenvalue related to 7. The eigenfunction W, depicted in
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FIG. 8. (Color online) Probability density of the position of the
central monomer of a 129-monomer polymer, between absorbing
walls located at R,==+8. The curves are obtained at times ¢
=2000,4000,6000,8000, 10 000, and are the result of 100 000 in-
dependent simulations collected in bins of size AR=0.1. To remove
the effect of absorption all curves have been normalized, such that
their integral is unity. The r=2000 curve is relatively smooth, while
that of r=10000 is very noisy because only in a small portion of
runs the tagged particle was not absorbed, and consequently the
sample size is small. Smooth lines represent two suggested eigen-
functions W(xR,)/R,: the dashed line corresponds to W(x)=[1
+cos(mx)]/2 (see text), while the solid line represents the normal-
ized eigenfunction given by Eq. (A4) in Ref. [14].

Fig. 8, appears to be universal, although specific to our form
of subdiffusion, while 7 scales as R;‘ and is independent of N.

In the case of a regular diffusion (in the scaled variable
x=R/R,) we have W(x)xcos(mx/2), i.e., the function van-
ishes at the boundaries (x==+1) with a finite slope. By con-
trast, the results depicted in Fig. 8 suggest a vanishing slope
at the boundary. In fact, an attempt to fit the function by a
few terms of the Fourier series by+b; cos(mx)+--- gives b
=~ b, while the coefficients of higher Fourier components are
by an order of magnitude smaller. In Ref. [14] the fractional
Laplacian operator was examined in a bounded domain.
Their particular implementation of boundary conditions en-
abled calculation of the eigenfunction W(x) for various val-
ues of the fractional order. In particular, the explicit expres-
sion for the case corresponding to subdiffusion with «
=1/2 in our notation is given in Eq. (A4) of Ref. [14] with
a=4 in their notation. While this (normalized) function, de-
picted by a smooth solid line in Fig. 8, qualitatively re-
sembles the numerical curves, it does not provide a quanti-
tative fit. This makes the fractional Laplacian operator a
somewhat unlikely candidate for describing the long-time
behavior of our diffuser.

VI. DISCUSSION

In this work we concentrated on an extremely simple, and
yet nontrivial model of subdiffusion. The Gaussian nature
allows analytic calculation of some properties, such as the
probability distribution of freely moving particles; but the
absorption properties were studied numerically. We believe
that similar results should apply to self-avoiding polymers,
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although separation into independent Rouse modes is no
longer possible, and probably not much can be done beyond
simple scaling arguments. Within our simple model, we find
that the process of absorption is quite different from other
simplified subdiffusive processes in the literature.

Anomalous diffusion of a monomer has several features
resembling the translocation of a long polymer through a
narrow pore in a membrane. This process has been exten-
sively studied experimentally during the last decade [22-24].
In the theoretical description of translocation, a single vari-
able s representing the monomer number at the pore [25-28]
indicates how much of the polymer has passed to the other
side. If the translocation process is very slow, the mean force
acting on the monomer in the hole can be determined from a
simple calculation of entropy, and the translocation problem
is reduced to the escape of a “particle” (the translocation
coordinate) over a potential barrier. Such theories produce
qualitative understanding of experimental results [29]. How-
ever, if the process is not slow enough, compared to the
relaxation times of Rouse modes, then its dynamics is more
complicated. Successive steps of the reaction coordinate are
then correlated in a manner closely resembling the correla-
tions between steps of a tagged monomer in a polymer. In
Ref. [30], it was numerically verified that s indeed undergoes
anomalous diffusion in the 1D “space of monomer num-
bers.” It was further argued that the relaxation of the polymer
constrains the translocation process and consequently deter-
mines the translocation time. Such behavior closely relates
the translocation process to the anomalous diffusion of a
single monomer.

In the last few years significant progress has been made in
the theoretical modeling of the translocation process. On one
hand, short time behavior has been modeled in great detail
[31], and on the other hand scaling consideration of the long
time behavior have been extended to include hydrodynamic
interactions [32,33]. Recently Grosberg et al. [34] developed
an intuitive scaling picture of polymer translocation under
the influence of a force. (See also Ref. [35].) A variety of
scaling regimes with force applied to the end point or at the
pore have been investigated numerically in some detail [36].
Some recent studies [37,38] suggest that the translocation
process maybe even slower than dictated by the relaxation of
the Rouse modes. If so, this would weaken the analogy be-
tween the translocation and the anomalous diffusion of a
monomer. (The accuracy of these claims is questioned in
further work [39].)

To the extent that one may draw an analogy between
translocation and anomalous diffusion in the presence of ab-
sorbing boundaries, one may inquire whether the mean trans-
location time is finite. Reference [40] argues that transloca-
tion may be described by a fractional diffusion equation and,
consequently, require an infinite mean time, as found in the
solutions of such an equation [6]. A similar point is made in
Ref. [38], where a detailed study of the PDF of translocation
times is fitted to a slowly decaying function for large times.
However, direct (experimental and numerical) measurements
appear to indicate well defined average translocation times.
Our results offer a model where absorption times of an
anomalous diffuser are finite. Clearly more detailed studies
of translocation are needed to resolve this question.
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In this work we studied in detail the subdiffusion of a
tagged monomer in a Gaussian polymer. In the absence of
absorption all properties can be derived analytically. How-
ever, upon inclusion of absorbing walls, we had to resort to
numerical simulations. While we can characterize all proper-
ties of the numerical results, we are still missing an equation
that can describe the evolution of the PDF of the position of
the tagged particle. In fact, the numerical results exclude
several simple forms for such an equation.

PHYSICAL REVIEW E 76, 061121 (2007)

Note added in proof. Ref. [41] was recently brought to our
attention. This paper treats analytically a similar problem.
However, its use of method of images leads to conclusions
that are inconsistent with our results.
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